质量间隙和核能
标准模型的建立是另一个非常宏大的故事,这里就不多说了,这里谈一个不得不说的问题:质量问题。
在上面我们知道了费米子是组成物质的粒子,玻色子是传递相互作用力的粒子。比如两个电子之间通过交换光子来传递电磁力,两个夸克通过交换胶子来传递强力,那么光子和胶子就分别是传递电磁力和强力的规范玻色子。
但是,大家有没有考虑过玻色子的质量问题?如果传递相互作用力的玻色子质量过大或者过小会咋样?
还是以溜冰场传球为例,假设两个人站在溜冰场上相互传篮球,那么一开始他们会因为篮球的冲力而后退(这就是斥力的表现),从而把距离拉开,但是他们会一直这样慢慢后退下去么?
当然不会!当两人之间的距离足够远的时候,你投篮球根本就投不到我这里来了,那我就不会后退了。再想一下,如果你投的不是篮球而是铅球那会怎样?那可能我们还在很近的时候,你的铅球就投不到我这里来了。
在溜冰场的模型里,球就是传递作用力的玻色子,你无法接到球就意味着这个力无法传到你这里来,就是说它的力程是有限的。从篮球和铅球的对比中我们也能清楚的知道:玻色子的质量越大,力程越短,质量越小,力程越长,如果玻色子的质量为零,那么这个力程就是无限远的。
所以,为什么电磁力是长程力,能传播很远呢?因为传递电磁力的光子没有质量。但是我们也清楚的知道,强力和弱力都仅仅局限在原子核里,也就是说强力、弱力都是短程力,所以,按照我们上面的分析,那么传递强力和弱力的玻色子似乎应该是有质量的,有质量才能对应短程力嘛。
但是,杨振宁在研究规范场的时候,他发现要使得系统具有局域规范不变性,那么传递作用力的规范玻色子的质量就必须为零。也就是说,规范玻色子如果有质量,它就会破坏局域规范对称性。
为什么局域规范对称性要求玻色子的质量必须为零呢?你可以这样想,什么叫局域规范对称?那就是不同的地方在做着不同的变换,既然不同的地方变换是不一样的,那么肯定就必须有个中间的信使来传递这种状态,这样大家才能协调工作,不然你跳你的我跳我的岂不是乱了套?
好,既然这个信使要在不同地方(也可能是两个非常远的地方)传递状态,按照上面的分析,它是不是应该零质量?只有质量为零才能跑的远嘛~
所以,这样分析之后,我们就会发现局域规范对称性和规范玻色子零质量之间的对应关系是非常自然的。但是,这样就造成了现在的困境:局域规范对称性要求规范玻色子是零质量的,但是强力、弱力的短程力事实似乎要求对应的规范玻色子必须是有质量的,怎么办?
这个问题不仅困扰着杨振宁,它也同样困扰着泡利(其实当时对规范场感兴趣的也就他们寥寥几个)。
泡利开始对规范场的事情也很感兴趣(杨振宁就是读了泡利1941年的那篇论文才开始对规范场感兴趣的),但是当泡利发现了这个似乎无解的质量问题之后,他就慢慢对规范场失去了兴趣,也就没能得出最后的方程。
杨振宁的情况稍微不一样,他的数学功底非常好,对群论的深入理解能够让他更深刻的理解对称性的问题(想想那会儿物理学家都不待见群论,泡利还带头把群论称为群祸)。
另外,在美学思想上,杨振宁是爱因斯坦的铁杆粉丝,他们都是“对称决定相互作用”坚定支持者,这使得杨振宁对规范场产生了谜之喜爱。而且,杨振宁那会儿才30岁左右,是科学家精力和创造力的巅峰时期,自然无所畏惧。
所以,杨振宁一直在疯狂地寻找杨-米尔斯方程,找到方程之后,即便知道有尚未解决的质量问题,他依然决定发表他的论文。
在他眼里,这个方程,这套理论是他心里“对称决定相互作用”的完美代表,他跟爱因斯坦一样深信上帝喜欢简洁和美,深信上帝的简单和美是由精确对称决定的。如果是这样,那么还有什么比基于规范不变性这种深刻对称的杨-米尔斯理论更能描绘上帝的思想呢?
杨振宁对对称性的深刻理解使得他对杨-米尔斯理论有非常强的信心,至于强力、弱力上表现出来的质量问题,那不过是这个理论在应用层面出现了一些问题。
强力、弱力比电磁力复杂很多,因此用杨-米尔斯理论来解释强力、弱力自然就不会像处理电磁力那样简单。为什么电磁力这么简单?你想想,电子有电效应,电子的运动产生磁效应,电子之间的相互作用是通过光子这个规范玻色子传递的,所以电磁力的本质就是电子和光子的相互作用。
这里只有一个粒子电子,和一个规范玻色子光子,而且光子还是没有质量的,你再看看强力里面,三种色夸克,八种不同的胶子,这铁定比电磁力复杂多了啊!
所以,杨振宁想的是:杨-米尔斯理论没问题,现在它应用在强力弱力上出现了一些问题(质量问题就是初期最大的一个),这也是自然的。这些是问题,而非错误,以后随着人们研究的深入,这些问题应该可以慢慢得到解决的。
历史的发展确实是这样,质量问题后来都通过一些其他的手段得到了解决,那么质量问题最终是怎么解决的呢?
在描述强力的量子色动力学里,我们注意到传递夸克间作用力的胶子本来就是零质量的,零质量跟规范对称性是相容的。那但是,如果这样的话,零质量的玻色子应该对应长程力啊,为什么强力是短程力(只在原子核里有效)呢?
这就涉及到了强力里特有的一种性质:渐近自由。渐近自由说夸克之间的距离很远的时候,它们之间的作用力非常大,一副谁也不能把它们分开的架势,但是一旦真的让它们在一起了,距离很近了,它们之间的相互作用力就变得非常弱了,好像对面这个夸克跟它没任何关系似的,活脱脱的一对夸克小情侣。这样在量子色动力学里,零质量的规范玻色子就和强力的短程力没有冲突了。
渐近自由解释了为什么胶子是零质量但是强力确是短程力,那么传递弱力的w和z玻色子可是有质量的。有质量的话短程力是好解释了,但是我们上面说有质量的规范玻色子会破坏规范对称性,这规范对称性可是杨-米尔斯理论的根基啊,它被破坏了那还怎么玩?
最后解决这个问题的是希格斯机制。希格斯机制是来打圆场的:你杨-米尔斯理论要求规范玻色子是零质量的,但是最后我们测量到w和z玻色子是有质量的,怎么办呢?
简单,我认为w和z这些传递弱力的规范玻色子一出生的时候是零质量的,但是它来到这个世界之后慢慢由于某种原因获得了质量,也就是说它们的质量不是天生的而是后天赋予的,这样就既不与杨-米尔斯理论相冲突,也不跟实际测量相冲突了。
所以,希格斯机制其实就是赋予粒子质量的机制。它认为我们的宇宙中到处都充满了希格斯场,粒子如果不跟希格斯场发生作用,它的质量就是零(比如光子、胶子),如果粒子跟希格斯场发生作用,那么它就有质量,发生的作用越强,得到的质量就越大。
需要说明的是,并不是所有的质量都来自于粒子和希格斯场的相互作用,还有一部分来自粒子间的相互作用。
2012年7月,科学家终于在大型强子对撞机(lhc)中找到了希格斯粒子,为这段故事画上了一个圆满的句号,也理所当然地预约了2013年的诺贝尔物理学奖。
这样杨-米尔斯理论就可以完整的描述强力、弱力和电磁力了,在霍夫特完成了非阿贝尔规范场的重整化(重整化简单的说就是让理论能算出有意义的数值,而不是无穷大这种没意义的结果,这是点粒子模型经常会出现的问题。
举个最简单的例子,我们都知道电荷越近,它们之间的电磁力越大,那么当电荷的距离趋近于零的时候,难道电磁力要变成无穷大么?这个当做思考题~)之后,粒子物理标准模型就正式投产商用。
至此,我们关于杨-米尔斯理论的故事就告一段落了,相信能坚持看到这里的人对杨-米尔斯理论应该都有了个大致的了解,对它的作用和意义也会有自己的判断。
杨振宁先生是我们国宝级的科学家,杨-米尔斯理论是他工作里目前已知的最为璀璨的明珠(鉴于杨振宁先生工作的基础性和前瞻性,他有很多理论刚提出来的时候不被重视,过了几十年之后却发现它极为重要,所以我不确定以后是否会出现比杨-米尔斯理论更重要的东西)。
诺特发现了对称性和守恒律之间的关系,打开了现代物理对称性的大门。
爱因斯坦敏锐而深刻的意识到了这点,然后以雷霆之势将它应用在相对论上,取得的巨大成功把当时其他的科学家惊得目瞪口呆。
但是这个套路爱因斯坦熟悉,其他人不熟啊,况且在量子革命的时代,爱因斯坦是那帮量子革命家的“反面教材”,波尔才是他们的教皇,所以人家也不屑于跟你玩。
杨振宁可以说是爱因斯坦的嫡系弟子,如果说爱因斯坦对对称性是偏爱的话,那么杨振宁对对称性就是情有独钟了。他充分吸收了爱因斯坦的对称思想,并且把它发扬光大,再吸收了外尔的规范对称的思想,最后创造了集大成的杨-米尔斯理论。
杨-米尔斯理论出来以后,对称性就不再是一个人的玩具了,杨振宁通过这个理论把对称性这种高大上的精英产品一下子变成了谁都可以玩的平民玩具,他把如何释放对称性里蕴藏能量的方式给标准化、工具化、流水化了。
从此,“对称决定相互作用”就不再是一句标语,而成了物理学家们的共识和最基本的指导思想,这极大的释放了物理学家的生产力,为后来快速构建标准模型奠定了基础。
这一块是大家在谈论杨振宁先生的工作,谈论杨-米尔斯理论的时候最容易忽略的一块,如果你不能认识到对称性在现代物理里的重要性,不能认识到杨振宁先生和杨-米尔斯理论在对称性问题上的作用,那么你对杨先生工作的理解是非常片面的,甚至错失了他最精华的部分。
希格斯机制、渐近自由、夸克禁闭、自发对称破缺、规范场的重整化,这些从杨-米尔斯理论到标准模型之间众多精彩纷呈的故事似乎更适合说书,但是,大家要记住对称性才是现代物理的核心。
杨振宁先生是非常伟大的物理学家,除了在学术上取得的巨大成就以外,他的治学态度一样十分值得大家去深入学习。
深入了解之后你能非常明显的感觉到杨先生身上同时闪烁着中国教育和西方教育的优点,他非常有效的把东西方教育里的糟粕都给规避了,所以杨先生总是能很超前的看到一些关键问题。
当然,还是有一些问题,比如说杨米尔斯方程的解的问题。
还有一些依然解释不了的问题,这可能需要完全会打出来,才能够解决这个七大问题之一了。
或需要把这个解给做出来,才能够搭建起强力和电磁力之间的桥梁!
索性,他现在离这个答案貌似不远了。
拿起手中的笔和纸,王峰想了想,开始了验算。
这个大部分人看到之后就会感到头痛的方程式,在王峰看来却是如此的宝贵!